Walk-through weighing of pigs using machine vision and an artificial neural network

نویسندگان

  • Y. Wang
  • W. Yang
  • P. Winter
  • L. Walker
چکیده

nt matter & 2008 IAgrE. temseng.2007.08.008 thor. Tel.: +1 256 372 4158; : [email protected] Machine vision-based weighing of pigs is a non-intrusive, fast and relatively accurate approach that could reduce stress on both the animal and the stockman during the weighing process. An image-based walk-through system was developed in this study for pig liveweight approximation without having to restrain the pig to a certain area for stationary imaging. A protocol was developed to automatically screen and select the images captured for image processing. The artificial neural network technique was used in this study to correlate a multitude of physical features extracted from the walk-through images to pig liveweight in an attempt to improve the accuracy of liveweight approximation. The results showed that the average relative error of the walk-through weighing system was around 3%. The walk-through system has made it even easier for stockmen to obtain the liveweight of pigs using a machine vision-based weighing system. & 2008 IAgrE. Published by Elsevier Ltd. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design, Development and Evaluation of an Orange Sorter Based on Machine Vision and Artificial Neural Network Techniques

ABSTRACT- The high production of orange fruit in Iran calls for quality sorting of this product as a requirement for entering global markets. This study was devoted to the development of an automatic fruit sorter based on size. The hardware consisted of two units. An image acquisition apparatus equipped with a camera, a robotic arm and controller circuits. The second unit consisted of a robotic...

متن کامل

Bubble Pressure Prediction of Reservoir Fluids using Artificial Neural Network and Support Vector Machine

Bubble point pressure is an important parameter in equilibrium calculations of reservoir fluids and having other applications in reservoir engineering. In this work, an artificial neural network (ANN) and a least square support vector machine (LS-SVM) have been used to predict the bubble point pressure of reservoir fluids. Also, the accuracy of the models have been compared to two-equation stat...

متن کامل

Engineering Application Of Correlation on Ann Estimated Mass

A functional relationship between two variables, applied mass to a weighing platform and estimated mass using Multi-Layer Perceptron Artificial Neural Networks is approximated by a linear function. Linear relationships and correlation rates are obtained which quantitatively verify that the Artificial Neural Network model is functioning satisfactorily. Estimated mass is achieved through recallin...

متن کامل

Estimation of the Ampere Consumption of Dimension Stone Sawing Machine Using of Artificial Neural Networks

Nowadays, estimating the ampere consumption and achieve to the optimum condition from the perspective of energy consumption is one of the most important steps to reduce the production costs. In this research it is tried to develop an accurate model for estimating the ampere consumption by using the artificial neural networks (ANN).In the first step, experimental studies were carried out on 7 ca...

متن کامل

Identification of Houseplants Using Neuro-vision Based Multi-stage Classification System

In this paper, we present a machine vision system that was developed on the basis of neural networks to identify twelve houseplants. Image processing system was used to extract 41 features of color, texture and shape from the images taken from front and back of the leaves. The features were fed into the neural network system as the recognition criteria and inputs. Multilayer perceptron (MLP) ne...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008